1. Simplificação da gramática livre do contexto
A gramática livre do contexto já está simplificada.
G = ({S, A, B, C}, {a, b, c}, P, S)
P = {< S > -> < A > < B > c
< A > -> < B > < A >
| < C > c < B >
| a
< B > -> < A > < B > b
| b
< C > -> < C > < A >
| c }
2. Renomeação das variáveis em uma ordem crescente qualquer
G = ({A, B, C, D}, {a, b, c}, P, A)
P = {< A > -> < B > < C > c
< B > -> < C > < B >
| < D > c < C >
| a
< C > -> < B > < C > b
| b
< D > -> < D > < B >
| c }
3. Transformação de produções para a forma < Ar > -> < As > α, onde r ≤ s
G = ({A, B, C, D}, {a, b, c}, P, A)
P = {< A > -> < B > < C > c
< B > -> < C > < B >
| < D > c < C >
| a
< C > -> < C > < B > < C > b
| < D > c < C > < C > b
| a < C > b
| b
< D > -> < D > < B >
| c }
4. Exclusão das recursões da forma < Ar > -> < Ar > α
G = ({A, B, C, C₁, D, D₁}, {a, b, c}, P, A)
P = {< A > -> < B > < C > c
< B > -> < C > < B >
| < D > c < C >
| a
< C > -> < D > c < C > < C > b < C₁ >
| a < C > b < C₁ >
| b < C₁ >
| < D > c < C > < C > b
| a < C > b
| b
< C₁ > -> < B > < C > b < C₁ >
| < B > < C > b
< D > -> c < D₁ >
| c
< D₁ > -> < B > < D₁ >
| < B > }
5. Um terminal no início do lado direito de cada produção
G = ({A, B, C, C₁, D, D₁}, {a, b, c}, P, A)
P = {< A > -> c < D₁ > c < C > < C > b < C₁ > < B > < C > c
| c < C > < C > b < C₁ > < B > < C > c
| a < C > b < C₁ > < B > < C > c
| b < C₁ > < B > < C > c
| c < D₁ > c < C > < C > b < B > < C > c
| c c < C > < C > b < B > < C > c
| a < C > b < B > < C > c
| b < B > < C > c
| c c < C > < C > c
| a < C > c
< B > -> c < D₁ > c < C > < C > b < C₁ > < B >
| c < C > < C > b < C₁ > < B >
| a < C > b < C₁ > < B >
| b < C₁ > < B >
| c < D₁ > c < C > < C > b < B >
| c c < C > < C > b < B >
| a < C > b < B >
| b < B >
| c c < C >
| a
< C > -> c < D₁ > c < C > < C > b < C₁ >
| c < C > < C > b < C₁ >
| a < C > b < C₁ >
| b < C₁ >
| c < D₁ > c < C > < C > b
| c c < C > < C > b
| a < C > b
| b
< C₁ > -> c < D₁ > c < C > < C > b < C₁ > < B > < C > b < C₁ >
| c < C > < C > b < C₁ > < B > < C > b < C₁ >
| a < C > b < C₁ > < B > < C > b < C₁ >
| b < C₁ > < B > < C > b < C₁ >
| c < D₁ > c < C > < C > b < B > < C > b < C₁ >
| c c < C > < C > b < B > < C > b < C₁ >
| a < C > b < B > < C > b < C₁ >
| b < B > < C > b < C₁ >
| c c < C > < C > b < C₁ >
| a < C > b < C₁ >
| c < D₁ > c < C > < C > b < C₁ > < B > < C > b
| c < C > < C > b < C₁ > < B > < C > b
| a < C > b < C₁ > < B > < C > b
| b < C₁ > < B > < C > b
| c < D₁ > c < C > < C > b < B > < C > b
| c c < C > < C > b < B > < C > b
| a < C > b < B > < C > b
| b < B > < C > b
| c c < C > < C > b
| a < C > b
< D > -> c < D₁ >
| c
< D₁ > -> c < D₁ > c < C > < C > b < C₁ > < B > < D₁ >
| c < C > < C > b < C₁ > < B > < D₁ >
| a < C > b < C₁ > < B > < D₁ >
| b < C₁ > < B > < D₁ >
| c < D₁ > c < C > < C > b < B > < D₁ >
| c c < C > < C > b < B > < D₁ >
| a < C > b < B > < D₁ >
| b < B > < D₁ >
| c c < C > < D₁ >
| a < D₁ >
| c < D₁ > c < C > < C > b < C₁ > < B >
| c < C > < C > b < C₁ > < B >
| a < C > b < C₁ > < B >
| b < C₁ > < B >
| c < D₁ > c < C > < C > b < B >
| c c < C > < C > b < B >
| a < C > b < B >
| b < B >
| c c < C >
| a }
6. Produções da forma < Ar > -> a α onde α é composto por variáveis
G = ({A, B, C, C₁, D, D₁, X₀₁, X₀₂, X₀₃, X₀₄, X₀₅, X₀₆, X₀₇, X₀₈, X₀₉, X₁₀, X₁₁, X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, X₁₈, X₁₉, X₂₀,
X₂₁, X₂₂, X₂₃, X₂₄, X₂₅, X₂₆, X₂₇, X₂₈, X₂₉, X₃₀, X₃₁, X₃₂, X₃₃, X₃₄, X₃₅, X₃₆, X₃₇, X₃₈, X₃₉, X₄₀, X₄₁, X₄₂, X₄₃, X₄₄,
X₄₅, X₄₆, X₄₇, X₄₈, X₄₉, X₅₀, X₅₁, X₅₂, X₅₃, X₅₄, X₅₅, X₅₆, X₅₇, X₅₈, X₅₉, X₆₀, X₆₁, X₆₂, Y₀₁, Y₀₂, Y₀₃, Y₀₄, Y₀₅, Y₀₆,
Y₀₇, Y₀₈, Y₀₉, Y₁₀, Y₁₁, Y₁₂, Y₁₃, Y₁₄, Y₁₅, Y₁₆, Y₁₇, Y₁₈, Y₁₉, Y₂₀, Y₂₁, Y₂₂, Y₂₃, Y₂₄, Y₂₅, Y₂₆, Y₂₇, Y₂₈, Y₂₉, Y₃₀,
Y₃₁, Y₃₂, Y₃₃, Y₃₄, Y₃₅, Y₃₆, Y₃₇}, {a, b, c}, P, A)
P = {< A > -> c < D₁ > < Y₀₁ > < C > < C > < X₀₁ > < C₁ > < B > < C > < Y₀₂ >
| c < C > < C > < X₀₂ > < C₁ > < B > < C > < Y₀₃ >
| a < C > < X₀₃ > < C₁ > < B > < C > < Y₀₄ >
| b < C₁ > < B > < C > < Y₀₅ >
| c < D₁ > < Y₀₆ > < C > < C > < X₀₄ > < B > < C > < Y₀₇ >
| c < Y₀₈ > < C > < C > < X₀₅ > < B > < C > < Y₀₉ >
| a < C > < X₀₆ > < B > < C > < Y₁₀ >
| b < B > < C > < Y₁₁ >
| c < Y₁₂ > < C > < C > < Y₁₃ >
| a < C > < Y₁₄ >
< B > -> c < D₁ > < Y₁₅ > < C > < C > < X₀₇ > < C₁ > < B >
| c < C > < C > < X₀₈ > < C₁ > < B >
| a < C > < X₀₉ > < C₁ > < B >
| b < C₁ > < B >
| c < D₁ > < Y₁₆ > < C > < C > < X₁₀ > < B >
| c < Y₁₇ > < C > < C > < X₁₁ > < B >
| a < C > < X₁₂ > < B >
| b < B >
| c < Y₁₈ > < C >
| a
< C > -> c < D₁ > < Y₁₉ > < C > < C > < X₁₃ > < C₁ >
| c < C > < C > < X₁₄ > < C₁ >
| a < C > < X₁₅ > < C₁ >
| b < C₁ >
| c < D₁ > < Y₂₀ > < C > < C > < X₁₆ >
| c < Y₂₁ > < C > < C > < X₁₇ >
| a < C > < X₁₈ >
| b
< C₁ > -> c < D₁ > < Y₂₂ > < C > < C > < X₁₉ > < C₁ > < B > < C > < X₂₀ > < C₁ >
| c < C > < C > < X₂₁ > < C₁ > < B > < C > < X₂₂ > < C₁ >
| a < C > < X₂₃ > < C₁ > < B > < C > < X₂₄ > < C₁ >
| b < C₁ > < B > < C > < X₂₅ > < C₁ >
| c < D₁ > < Y₃₀ > < C > < C > < X₂₆ > < B > < C > < X₂₇ > < C₁ >
| c < Y₂₄ > < C > < C > < X₂₈ > < B > < C > < X₂₉ > < C₁ >
| a < C > < X₃₀ > < B > < C > < X₃₁ > < C₁ >
| b < B > < C > < X₃₂ > < C₁ >
| c < Y₂₅ > < C > < C > < X₃₃ > < C₁ >
| a < C > < X₃₄ > < C₁ >
| c < D₁ > < Y₂₆ > < C > < C > < X₃₅ > < C₁ > < B > < C > < X₃₆ >
| c < C > < C > < X₃₇ > < C₁ > < B > < C > < X₃₈ >
| a < C > < X₃₉ > < C₁ > < B > < C > < X₄₀ >
| b < C₁ > < B > < C > < X₄₁ >
| c < D₁ > < Y₂₇ > < C > < C > < X₄₂ > < B > < C > < X₄₃ >
| c < Y₂₈ > < C > < C > < X₄₄ > < B > < C > < X₄₅ >
| a < C > < X₄₆ > < B > < C > < X₄₇ >
| b < B > < C > < X₄₈ >
| c < Y₂₉ > < C > < C > < X₄₉ >
| a < C > < X₅₀ >
< D > -> c < D₁ >
| c
< D₁ > -> c < D₁ > < Y₃₀ > < C > < C > < X₅₁ > < C₁ > < B > < D₁ >
| c < C > < C > < X₅₂ > < C₁ > < B > < D₁ >
| a < C > < X₅₃ > < C₁ > < B > < D₁ >
| b < C₁ > < B > < D₁ >
| c < D₁ > < Y₃₁ > < C > < C > < X₅₄ > < B > < D₁ >
| c < Y₃₂ > < C > < C > < X₅₅ > < B > < D₁ >
| a < C > < X₅₆ > < B > < D₁ >
| b < B > < D₁ >
| c < Y₃₃ > < C > < D₁ >
| a < D₁ >
| c < D₁ > < Y₄₀ > < C > < C > < X₅₇ > < C₁ > < B >
| c < C > < C > < X₅₈ > < C₁ > < B >
| a < C > < X₅₉ > < C₁ > < B >
| b < C₁ > < B >
| c < D₁ > < Y₃₅ > < C > < C > < X₆₀ > < B >
| c < Y₃₆ > < C > < C > < X₆₁ > < B >
| a < C > < X₆₂ > < B >
| b < B >
| c < Y₃₇ > < C >
| a
< X₀₁ > -> b
< X₀₂ > -> b
< X₀₃ > -> b
< X₀₄ > -> b
< X₀₅ > -> b
< X₀₆ > -> b
< X₀₇ > -> b
< X₀₈ > -> b
< X₀₉ > -> b
< X₁₀ > -> b
< X₁₁ > -> b
< X₁₂ > -> b
< X₁₃ > -> b
< X₁₄ > -> b
< X₁₅ > -> b
< X₁₆ > -> b
< X₁₇ > -> b
< X₁₈ > -> b
< X₁₉ > -> b
< X₂₀ > -> b
< X₂₁ > -> b
< X₂₂ > -> b
< X₂₃ > -> b
< X₂₄ > -> b
< X₂₅ > -> b
< X₂₆ > -> b
< X₂₇ > -> b
< X₂₈ > -> b
< X₂₉ > -> b
< X₃₀ > -> b
< X₃₁ > -> b
< X₃₂ > -> b
< X₃₃ > -> b
< X₃₄ > -> b
< X₃₅ > -> b
< X₃₆ > -> b
< X₃₇ > -> b
< X₃₈ > -> b
< X₃₉ > -> b
< X₄₀ > -> b
< X₄₁ > -> b
< X₄₂ > -> b
< X₄₃ > -> b
< X₄₄ > -> b
< X₄₅ > -> b
< X₄₆ > -> b
< X₄₇ > -> b
< X₄₈ > -> b
< X₄₉ > -> b
< X₅₀ > -> b
< X₅₁ > -> b
< X₅₂ > -> b
< X₅₃ > -> b
< X₅₄ > -> b
< X₅₅ > -> b
< X₅₆ > -> b
< X₅₇ > -> b
< X₅₈ > -> b
< X₅₉ > -> b
< X₆₀ > -> b
< X₆₁ > -> b
< X₆₂ > -> b
< Y₀₁ > -> c
< Y₀₂ > -> c
< Y₀₃ > -> c
< Y₀₄ > -> c
< Y₀₅ > -> c
< Y₀₆ > -> c
< Y₀₇ > -> c
< Y₀₈ > -> c
< Y₀₉ > -> c
< Y₁₀ > -> c
< Y₁₁ > -> c
< Y₁₂ > -> c
< Y₁₃ > -> c
< Y₁₄ > -> c
< Y₁₅ > -> c
< Y₁₆ > -> c
< Y₁₇ > -> c
< Y₁₈ > -> c
< Y₁₉ > -> c
< Y₂₀ > -> c
< Y₂₁ > -> c
< Y₂₂ > -> c
< Y₂₃ > -> c
< Y₂₄ > -> c
< Y₂₅ > -> c
< Y₂₆ > -> c
< Y₂₇ > -> c
< Y₂₈ > -> c
< Y₂₉ > -> c
< Y₃₀ > -> c
< Y₃₁ > -> c
< Y₃₂ > -> c
< Y₃₃ > -> c
< Y₃₄ > -> c
< Y₃₅ > -> c
< Y₃₆ > -> c
< Y₃₇ > -> c }