Apresente uma derivação à extrema direita (DED) da sentença x + (y * (z * x) + z) sobre a gramática a seguir.
G = ({S, A, B, C}, {x, y, z, +, *, (, )}, P, S)
P = {< S > -> < S > + < S > | < A >
< A > -> < A > * < A > | < B >
< B > -> ( < S > ) | < C >
< C > -> x | y | z }
< S >
< S > + < S >
< S > + < A >
< S > + < B >
< S > + ( < S > )
< S > + ( < S > + < S > )
< S > + ( < S > + < A > )
< S > + ( < S > + < B > )
< S > + ( < S > + < C > )
< S > + ( < S > + z )
< S > + ( < A > + z )
< S > + ( < A > * < A > + z )
< S > + ( < A > * < B > + z )
< S > + ( < A > * ( < S > ) + z )
< S > + ( < A > * ( < A > ) + z )
< S > + ( < A > * ( < A > * < A > ) + z )
< S > + ( < A > * ( < A > * < B > ) + z )
< S > + ( < A > * ( < A > * < C > ) + z )
< S > + ( < A > * ( < A > * x ) + z )
< S > + ( < A > * ( < B > * x ) + z )
< S > + ( < A > * ( < C > * x ) + z )
< S > + ( < A > * ( z * x ) + z )
< S > + ( < B > * ( z * x ) + z )
< S > + ( < C > * ( z * x ) + z )
< S > + ( y * ( z * x ) + z )
< A > + ( y * ( z * x ) + z )
< B > + ( y * ( z * x ) + z )
< C > + ( y * ( z * x ) + z )
x + ( y * ( z * x ) + z )