Ybadoo - Soluções em Software Livre
Tutoriais
Linguagens Formais e Autômatos

Desenvolva uma expressão regular sobre o alfabeto Σ = {x, y, z} que produza a linguagem L = {w | w possui xz ou zz como prefixo, xxz ou yyx como subpalavra e yy ou yzy como sufixo}.

 

Para a classe de problemas abordado no enunciado do exercício, a elaboração da expressão regular que produza a linguagem L, segue o esquema composto por quatro casos, como segue:

ER = (((prefixos)(alfabeto)(subpalavras)(alfabeto)(sufixos)) +
((sobreposições prefixos/subpalavras)(alfabeto)(sufixos)) +
((prefixos)(alfabeto)(sobreposições subpalavras/sufixos)) +
(sobreposições prefixos/subpalavras/sufixos))

O primeiro caso considera que não existem sobreposições entre os elementos que definem os prefixos e as subpalavras e nem entre os elementos que definem as subpalavras e os sufixos da linguagem L, como segue:

ER = ((prefixos)(alfabeto)(subpalavras)(alfabeto)(sufixos))
ER = ((xz + zz) (x + y + z)* (xxz + yyx) (x + y + z)* (yy + yzy))

O segundo caso considera a existência de sobreposições entre os elementos que definem os prefixos e as subpalavras da linguagem L, como segue:

ER = ((sobreposições prefixos/subpalavras)(alfabeto)(sufixos))

No problema em questão, não existem sobreposições entre os elementos que definem os prefixos e as subpalavras da linguagem L, de modo que o presente caso não se aplica.

O terceiro caso considera a existência de sobreposições entre os elementos que definem as subpalavras e os sufixos da linguagem L, como segue:

ER = ((prefixos)(alfabeto)(sobreposições subpalavras/sufixos))

No problema em questão, não existem sobreposições entre os elementos que definem as subpalavras e os sufixos da linguagem L, de modo que o presente caso não se aplica.

O quarto e último caso considera a existência de sobreposições entre os elementos que definem os prefixos, as subpalavras e os sufixos da linguagem L, como segue:

ER = (sobreposições prefixos/subpalavras/sufixos)

No problema em questão, não existem sobreposições entre os elementos que definem os prefixos, as subpalavras e os sufixos da linguagem L, de modo que o presente caso não se aplica.

Desta forma, a expressão regular que produza a linguagem L é:

ER = ((xz + zz) (x + y + z)* (xxz + yyx) (x + y + z)* (yy + yzy))